

Parcours EE

Module EE 3.2: ACTIVITE 3

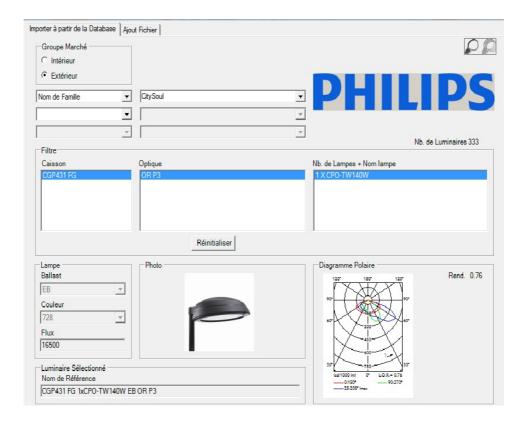
Eclairage Public.

Comparaison des solutions d'éclairage lodures Métalliques et LED Correction.

Table des matières

1. Implantation de la solution « lodures Métalliques »	рЗ
✓ 1.1 Importation du luminaire	рЗ
✓ 1.2 Implantation du luminaire	p4
√ 1.3 Simulation	p4
✓ 1.4 Optimisation de l'implantation	p4
✓ 1.5 Potentiel d'économie réalisable	р5
√ 1.6 Modification de la puissance de la lampe	р5
✓ 1.7 Réduction de puissance	p6
2. Implantation de la solution « LED »	р7
✓ 2.1 Importation du luminaire	р7
✓ 2.2 Implantation et simulation	р7
3. Comparaison des deux solutions	p8
4. Conclusion	p8

Nous allons, dans cette troisième activité, réaliser la simulation de l'implantation de deux solutions d'éclairage de la voie d'accès au deuxième rond point de la zone d'activité des « Six Marianne ».


Vous allez utiliser, pour cela, le projet réalisé dans « l'activité 2 ».

1. Implantation de la solution « lodures Métalliques ».

1.1. Importation du luminaire.

A partir de la base de données Philips, importer dans votre projet, le luminaire suivant.

Luminaire	Туре	
Caisson	CGP431 FG	
Optique	ORP3	
Ballast	Electronique	
Lampe	Type	
lodures Métallique à brûleur	CPO TW 140	
céramique		

1.2. Implantation du luminaire.

Le luminaire étant maintenant intégré à votre projet, vous allez l'implanter dans les mêmes conditions que celles fixées dans « l'activité 2 » avec une lampe SHP.

Luminaire	
Hauteur de montage	8m
Luminaire par poteau	1
Espacement poteau	20m
Longueur du bras	1.5m
Inclinaison du bras	0
saillie	-0.5m
Le luminaire doit être implanté	
côté Accotement.	

1.3. Simulation.

Lancer la simulation et compléter le tableau suivant.

Classe d'éclairage	Lampe	Résultat	Espacement [m]	Hauteur [m]	Em [lx]	U0	Emin (sc) [lx]
CE5	CPO-TW		20	8	32.1	0.5	4.7
Chaussée	140W						
CE5	CPO-TW		20	8	7.9	0.8	3.5
Trottoir	140W						

Les grandeurs photométriques sont-elles garanties dans les autres champs d'évaluation ?

Oui ! les grandeurs sont garanties dans toute les zones d'évaluation. On note une forte concentration du flux sur la zone « chaussée » alors que la zone « trottoir » est à la limite des valeurs préconisées.

1.4. Optimisation de l'implantation.

Procéder à l'optimisation de l'implantation et rechercher le meilleur compromis Hauteur/ Espacement permettant de garantir les grandeurs photométriques à maintenir sur les trois zones d'évaluation (Chaussée, Trottoir et Stationnement).

Classe	Lampe	Résultat	Espacement	Hauteur	Em	U0	Emin (sc)
d'éclairage			[m]	[m]	[lx]		[lx]
CE5	CPO-TW		30	10	18	0.4	1.7
Chaussée	140W						
CE5	CPO-TW		26	8/8.5	7.6	0.6	2.3
Trottoir	140W						
CE5	CPO-TW		30	10	10.5	0.5	2.8
Stationnement	140W						

L'étude d'optimisation fait apparaître que les grandeurs à maintenir seront garanties dans toutes les zones pour un espacement de 26 mètres et une hauteur de 8 mètres, soit 11 luminaires implantés.

1.5. Potentiel d'économie d'énergie réalisable par rapport à la solution SHP 150 Watts de « l'Activité 2 ».

Calculer l'économie d'énergie réalisée si on considère un temps de fonctionnement de l'installation de 4200 heures et une puissance consommée par luminaire de 154 watts. Quel est alors le gain carbone obtenu ?

Nombre de luminaires	calcul	Consommation annuelle En kWh
11 avec SHP 150W	11*0.169*4200	7807.8
11 avec I M 140W	11*0.154*4200	7114.8
	Economie réalisée en kWh	693
	Economie réalisée en CO2 (g)	69300

1.6. Modification de la puissance de la lampe.

Peut-on implanter des luminaires équipés de lampes de 60 Watts ?

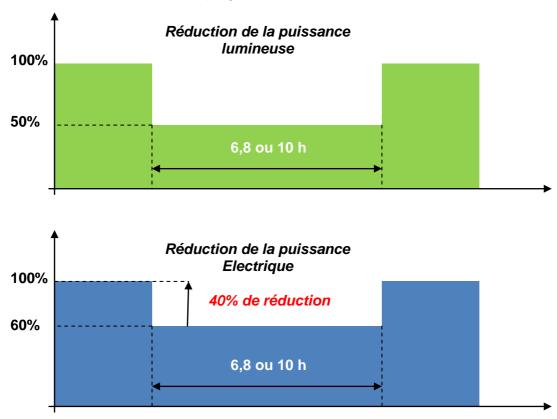
Reprendre l'étude et implantez le même luminaire avec une lampe CPO TW60W.

Non! l'éclairement moyen dans les zones « trottoir, stationnement et accotement » est inférieur à 7.5 lux.

Mettre en œuvre une solution permettant l'utilisation de ce type de lampe en maintenant un niveau d'éclairement dans la zone « trottoir » compatible avec la norme.

(Vous vous orienterez vers l'implantation de luminaire dédiés à l'éclairage de la zone « Trottoir ». le maintient des grandeurs photométriques sur la zone « Stationnement » peut être obtenu en modifiant l'inclinaison des luminaires orientés vers la chaussée.

On limitera l'étude à un espacement de 20 mètres entre luminaire. Les luminaires orientés côté « chaussée » seront installés à une hauteur de 8 mètres.) Voir fichier de correction DIALUX : ACTIVITE3 CPO-TW60.dlx


Nombre de Iuminaires	Calcul	Consommation annuelle En kWh
30	30*0.0673*4200	8479.8

1.7. Réduction de puissance.

L'un des avantages liés à l'utilisation de la solution « Citysoul avec lampe Cosmowhite » est l'intégration d'un ballast électronique.

Cette solution permet d'avoir la possibilité de réduire la puissance lumineuse de 50% pendant une durée de 6,8 ou 10 heures suivant la programmation.

A partir des résultats trouvés au paragraphe1.5, calculer l'économie réalisée si la durée de réduction de puissance est estimée à 2200h sur une année.

Solution implantée	calcul	Consommation annuelle En kWh
Sans Réduction De puissance	11*0.154*4200	7114.8
Avec Réduction de puissance	(7114.8*2000/4200)+(7114.8*2200*0.4/4200)	4870.72
	Economie réalisée en kWh	2244.08
	Economie réalisée en CO2 (g)	224408

2. Implantation de la solution « LED ».

2.1. Importation du luminaire.

A partir de la base de données Philips importer, dans votre projet, le luminaire suivant.

Luminaire	Туре
Caisson	BGP431
Optique Ballast	DW
Ballast	
Lampe	Туре
LED (104)	CFT-1S/830

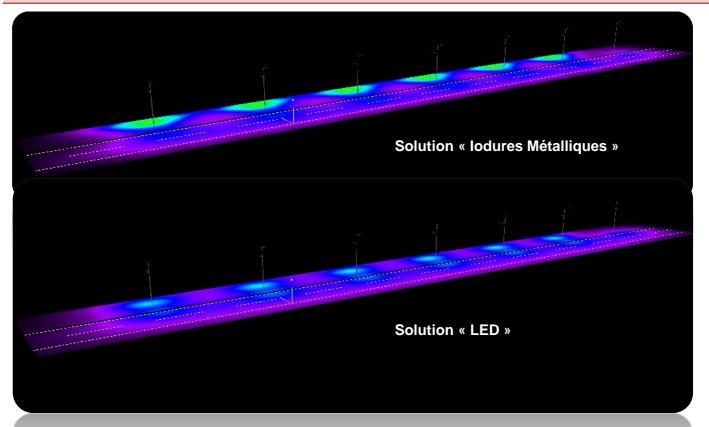
2.2. Implantation et simulation.

Implanter le luminaire dans votre projet et procéder à une nouvelle simulation.

- Les grandeurs photométriques définies pour notre situation d'éclairage (CE5) sont-elles garanties pour toutes les zones d'évaluation ? Non
- Faire l'étude d'optimisation de l'implantation (utiliser l'assistant « disposition optimisée rue ») :
 - ✓ Peut-on implanter cette solution en imposant un espacement minimum de 20 mètres ?
- ➤ Utiliser la solution évoquée au paragraphe 1.6 et implanter les luminaires avec des lampes (LED) CFT-1S/830 de puissances différentes

Lampe	Туре	Puissance (W)
LED (112)	CFT-1S/830	155
LED (104)	CFT-1S/830	146
LED (80)	CFT-1S/830	115
LED (64)	CFT-1S/830	90
LED (48)	CFT-1S/830	71

Fichier de correction DIALUX : ACTIVITE3 LED 112.dlx


> Pour la solution optimale choisie, effectuer le calcul de la consommation d'énergie électrique.

Fichier de correction DIALUX : ACTIVITE3 LED Optimisée.dlx

Nombre de luminaires	Calcul	Consommation annuelle En kWh
30	15*(0.071+0.115)*4200	11718

3. Comparaison des solutions.

		Chaus	ssée	Trot	toir				
	Puissance Installée En (W)	Emoy En (lx)	U0	Emoy En (lx)	U0	Gradation	couleur	Temps De chauffe	Durée De Vie En (h)
 olution iodures Métalliques	1800	15.6	0.7	27.9	0.7	oui	blanc	4 minutes	20000
Solution LED	2790	16.1	0.7	16.7	0.7	oui	blanc	5s	50000

STI2D-EE.3.2

4. Conclusion de l'étude comparative.

L'étude menée ici ne tient pas compte du coût d'installation des différentes solutions mais du coût énergétique d'utilisation. Nous avons opté pour la comparaison de différentes sources d'éclairage avec le même luminaire.

Dans le cas d'une utilisation sans diminution de puissance, les simulations tendent à privilégier la solution « iodures Métalliques » car plus performante au niveau de l'efficacité énergétique. La solution « LED » permet d'obtenir une durée de vie trois fois supérieure avec une consommation énergétique bien supérieure (55%).

Dans le cas d'une réduction de puissance, la solution « iodures métalliques » permet de réduire la puissance lumineuse de 50% en économisant 40% d'énergie. La réduction de puissance, pendant les heures de la nuit où le trafic est pratiquement inexistant, permet une économie non négligeable (32% pour une réduction de puissance pendant 52% du temps de fonctionnement).

C'est dans le domaine de la réduction de puissance que la solution LED se démarque. L'utilisation de dispositifs de détection de présence des piétons permet une réduction d'énergie de 70%. Associé à une réduction de puissance de 50% sur la zone chaussée l'économie peut atteindre 44%.

Les solutions LED ont sans doute la plus grande marge de progression en termes d'efficacité énergétique, avec un flux lumineux quasi instantané à l'allumage, il est possible de mettre en œuvre des solutions de gestion très réactives.